
APPLICATION OF A DIFFERENTIAL-DIFFERENCE 

METHOD TO THE SOLUTION OF A ONE-DIMENSIONAL 

NONSTATIONARY TWO-LAyER HEAT CONDUCTION 

PROBLEM WITH A MOVING BOUNDARY 

L.  Ya .  Z h e m o i d i n a  UDC 536.248.2 

We apply a different ial-difference method to obtain an approximate solution of a non- 
s ta t ionary heat conduction problem with a moving boundary for a medium consisting of 
an unbounded plate (0 _~ x _< l) and a halfspace (/< x < ~), possessing various the rmo-  
physical propert ies.  

Statement of the Problem and Its Solution. In many of the problems of thermotechnics  one is con- 
cerned with heat conduction problems in which the heat exchange is accompanied by a phase t ransformation.  
As examples, we cite problems of melting and hardening of solids. The essential  feature of these prob- 
lems is the presence of a boundary separating the phases, whose displacement  depends on the time. 

For  sufficiently strong heat sources  the mater ia l  at the surface melts,  vaporizes,  and is car r ied  
away by the external flow. In this case the problem is one involving a single phase. 

We consider  a problem of this kind for the case of a two-layer  medium, consisting of an unbounded 
plate (0 _< x _< l) and a halfspace ~ < x < r162 with various thermophysicaI  propert ies ,  the tempera ture  being 
identical at all points of each plane x = const. The temperature  of such a medium then sat isf ies the one- 
dimensional heat conduction equation. We assume that the plate surface is heated by a constant heat source 
q, and that initially the tempera ture  of the whole medium is a constant, which we take equal to zero. 

Up to the instant that the boundary begins to move, this problem is a two-layer  heat conduction prob- 
lem, one which, for given conditions, was considered in [1] and [2], where with the aid of the Laplace t r ans -  
format ion the tempera ture  distribution was obtained in each medium. 

Commencing with this solution as our initial stage (i.e., up to the instant of melting), we can find a 
time, which defines the s ta r t  of melting, and, consequently, also the instant at which the boundary begins 
to move. Moreover  we can take as our reference  origin the instant at which melting commences.  The 
problem so stated may be formulated mathematical ly  as follows: f rom the equations 

Ou~ _ k  o2u~ ~ ( t ) < x < l ,  O < t < T ,  (1) 
c~9~ Ot ~ Ox 2 '  

Ou2 = k 2 02u2 
Qg2 - Ot Ox ~ , l < x < oo , O < t < T (2) 

we wish to find tempera tures  ui(x, t) and u2(x , t), satisfying the initial conditions 

u~ (x, t){,=o = ~ (x), 0 -.< x < l, ~ (0)  = u m, 
u~ (x, 't) [t=o = r (x), l < x < oo 

(3) 

and the boundary conditions 

ul(x ,  t)]t=t(o--Um, u2(x, t) l~=| = 0 ,  (4) 
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and a l so  the condi t ions  of cont inui ty  of t e m p e r a t u r e  and heat  flow at the in t e r f ace  

ul (l,. t) = u 2 (I, t), k~ ~ -  = k~ 0% 
ox Ox !~=l 

I (5) 

Here  cp(x) and r a r e  the t e m p e r a t u r e  d i s t r ibu t ions  at  the ins tant  mel t ing  begins,  obtained f r o m  the so lu -  
t ion to the ini t ial  s tage  of the problem.  

To find the posi t ion of the mel t ing  f ron t  x = ~ (t), we use  the condi t ion which is sa t i s f ied  at  the phase 
t r ans i t i on  su r face :  

d~ = k Oul ',=~(o -k- q' O < t < T. (6) 

Condit ion (6) makes  sense  only for  0 < x _< l, s ince  fo r  x > l the p rob lem b e c o m e s  a s i n g l e - l a y e r  p rob lem,  
a solut ion fo r  which is given in [3]. 

We so lve  the p rob lem by applying the fol lowing d i f f e ren t i a l -d i f f e rence  scheme.  

In Eqs.  (1) and (2) we put t = t m +1, and we r ep l ace  the de r iva t ive  with r e s p e c t  to t by the f i n i t e -d i f -  
f e r e n c e  r a t io s  

Ou~ (x,. t) t=L~+~ ~ u~ (x, t~+~) - -  u~ (x, t~) 
ot h ' (7) 

ou~(x,ot t) ,=~+,~  us(x, t.~+O--u~(X,h tin) , (8) 

where  h = t m +1 - tm is the t i m e - s t e p .  

Subst i tut ing the e x p r e s s i o n s  (7) and (8), 
o r d i n a r y  d i f fe ren t ia l  equat ions  

4%m+1 (x) 
dx ~ a~u~, ~+1 (x) = - -  a~u~..~ (x), ~ (t.O < x < t, 

d~u~.m+l (x) 
dx 2 

r e spec t ive ly ,  into Eqs.  (1) and (2), we obtain a s y s t e m  of 

~u~.~+~ (x) = - a~u~,m (x), l < x < 

(m = 0, 1, 2 . . . .  ). 

(9) 

(lO) 

2 Here  a i = c i P i / k i  h and the ui, m +l{x) a pp rox ima te  ui(x , t m + l )  (i = 1, 2). 

The init ial  and boundary  condi t ions  a r e  t r a n s f o r m e d  as  fol lows:  

ul(x, t ) l t -o=Ul,  o (X)=~(x ) ,  0 ~ x < t ,  ~ ( 0 ) = u  m, 

us(x, t ) l t --o=U~,o(X)=~(x),  l < x <  ~ ,  

u,,m+l(x) lx=~,m+,~ = urn, u~.m+~ (x)[~=. = 0, (11) 

du~ ,.+1 (x) u~. , .+,( l)  = u~,,.+~(O, k~ du~.,.+~(x) = k~ " 
dx x=t dx x~g 

(m = O, 1, 2 . . . ) .  

Simi l a r ly  , by r ep lac ing  the t ime de r iva t ive  d( ( t ) /d t  by the f i n i t e -d i f f e r ence  ra t io  [( (tm + t) - . (  ( t in) ] /h  
in Eq. (6), we obtain equat ions for  de t e rmin ing  the ( m  +1, app rox ima t ing  the va lues  ~ (tm +1) 

~m+, = ~,~ , a~, [ dx ! =~,,+, k~ ] (12) 

(m = 0, 1, 2 . . . .  ). 

The solut ions  of Eqs.  (9) and (10), obtained by the method of v a r i a t i o n  of p a r a m e t e r s ,  can, upon 
taking into account  the condit ions (11) and the app rox ima te  equal i ty  Ul ,m+l[}  (t in+l) ] ~ U t , m + i ( } m + t )  , be 
put into the f o r m  
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Ul.~+I(X)~ Sha l (X- -~ra+ l )  {a, ~ ,1 .m(z)P(z)d2 + a~/~ 2 a2m(z)exp[--a2(z--l)] dz} 
P(~+~)  0 l " 

+ P(x) [ ~+1 ] 6 i " ai f ul"'n(z)shal(~'~+i--z)dz + u r n  - - a l  u~. ,n(z)shai(x--z  ) dz, (13) 
P (~+~) o 

l 

exp [--a=(x-- l )]  {a~k i .f u i ,~(z)shai(z--~. ,+Odz 
u2,,n+~ (x) ~- P (~m+i) o 

+1 

+ ajq  [a i ~ ul,ra(z) shai(~m+l--z)dz +UmI + a.~ i u~,m(z)R(z, ~m+l)d2}--a~ ~ue.m(z)sha2(z--x)dz  (14) 
0 1 x 

(re=O, i, 2 . . . .  ), 
where 

P (x) = aik i ch ai (l - -  x) + a2k 2 sh a 1 (l - -  x), 

R (z, x) =aik  1 sh a 2 (z--/) ch a i (l - -  x) + a2k ~ ch a 2 (z - -  l) sh a i (t - -  x). 

E x p r e s s i o n s  (13) and (14) can s e r v e  as  r e c u r s i o n  re la t ions  for  de t e rmin ing  the s u e e e s s i v e  va lues  of 

Ul,m +l (x) and u2, m +1 (x). 

To find the va lues  of the ( m  +1 we use  Eqs.  (12), which, a f t e r  subs t i tu t ions  a r e  made  fo r  u], m +1 (~m+l), 
a s s u m e  the f o r m  

l 

I ; 
~,'n+x 

+ Ue,~ (z) exp [ - -  a 2 (z - -  l)] dz 4- p (~m.1) Ur n + 
al  . ' a2 l 

l 
( re=O,  1, 2 . . . .  ), 

We d e t e r m i n e  the d i sp l a c e m e n t  of the moving  boundary  for  each t ime  in te rva l  h. 

We let 

(15) 

and 

r  - 
P (~=+,) 

~m+i--~m = 6m+i 

, i ] [ S  u~'~(z)p(z)dz+ al ja2"~(z )exp[ - -a~(z - - l ) ]dz+ t im" 

~rn+l 1 

Then 
(16) 

and f r o m  Eq. (15) we obtain  

(m = O, 1, 2 . . . .  ). (17) 

To d e t e r m i n e  5 m +1 we expand the funct ion ~(~m + 5m +1) in a Tay lo r  s e r i e s  

t 2 m ( ~  + 5re+l) = m(~m) + 6~+1r ( ~ )  + 0(6~+~). 

Taking into accoun t  t e r m s  up to o r d e r  52 m +1, we obtain, f r o m  Eqs.  (17), 

5 ~ + ~  ~ - -m' (~m)  ( r a = 0 ,  1, 2, ...), 

Cl 

(18) 
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where 

�9 ' (~m) = P' (~i'') �9 (~). 
P (~,,,) 

Knowing 5m+ 1 f rom Eqs. (18), we can success ively  determine ~m+l  for  m = 0, 1, 2, . . . , since ~0 = 0 is 
known. 

Using Rothe ' s  lemmas [4, 5], we can prove convergence of the approximate solutions to the exact 
solutions and thus est imate the e r r o r  of our method. In so doing, we can show that the e r r o r s  made a re  
of order  0 (11). 

ul (x, t), u2 (x, t) 
UM 

(t) 

Ci, C 2 
/31, /32 

T 

NOTATION 

are  the tempera tures ;  
is the melting point; 
is the function determining the position of moving boundary; 
are  the specific heat fluxes; 
are  the density; 
are  the hea t - t rans fe r  coefficients; 
is the latent heat of evaporation; 
is the t ime of process  under consideration. 

1. 
2. 
3. 
4. 
5. 

L I T E R A T U R E  C I T E D  

I. Matricon, Phys. Radium, 12, 15 {1951). 
Griffith and Horton, Proc.  Soc., 58, 481-487 (1946). 
L. Ya. Zhemoidina, Inzh.-Fiz.  Zh., 17, No. 4 (1969). 
E. Rothe, Math. Ann., 102, No. 5 (1930). 
A. A. Samarskii ,  Upper School Scientific Repor ts  [in Russian],  No. 1 (1959). 

1518 


