APPLICATION OF A DIFFERENTIAL-DIFFERENCE
METHOD TO THE SOLUTION OF A ONE-DIMENSIONAL
NONSTATIONARY TWO-LAYER HEAT CONDUCTION
PROBLEM WITH A MOVING BOUNDARY

L. Ya. Zhemoidina UDC 536.248.2

We apply a differential-difference method to obtain an approximate solution of 2 non-
stationary heat conduction problem with a moving boundary for a medium consisting of
an unbounded plate (0 = x <) and a halfspace ( < x < «), possessing various thermo-
physical properties.

Statement of the Problem and Its Solution. In many of the problems of thermotechnics one is con-
cerned with heat conduction problems in which the heat exchange is accompanied by a phase transformation.
As examples, we cite problems of melting and hardening of solids. The essential feature of these prob-
lems is the presence of a boundary separating the phases, whose displacement depends on the time.

For sufficiently strong heat sources the material at the surface melts, vaporizes, and is carried
away by the external flow. In this case the problem is one involving a single phase.

We consider a problem of this kind for the case of a two-layer medium, consisting of an unbounded
plate (0 = x =<1) and a halfspace ( < x < «) with various thermophysical properties, the temperature being
identical at all points of each plane x = const. The temperature of such a medium then satisfies the one-
dimensional heat conduction equation. We assume that the plate surface is heated by a constant heat source
g, and that initially the temperature of the whole medium is a constant, which we take equal to zero.

Up to the instant that the boundary begins to move, this probiem is a two-layer heat conduction prob-
lem, one which, for given conditions, was considered in [1] and [2], where with the aid of the Laplace trans-
formation the temperature distribution was obtained in each medium.

Commencing with this solution as our initial stage (i.e., up to the instant of melting), we can find a
time, which defines the start of melting, and, consequently, also the instant at which the boundary begins
to move, Moreover we can take as our reference origin the instant at which melting commences. The
problem so stated may be formulated mathematically as follows: from the equations
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we wish to find temperatures w (x, t) and uy (x, t), satisfying the initial conditions
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and also the conditions of continuity of temperature and heat flow at the interface
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Here ¢(x) and §(x) are the temperature distributions at the instant melting begins, obtained from the solu-
tion to the initial stage of the problem.

To find the position of the melting front x = £ (f), we use the condition which is satisfied at the phase
transition surface:
d Ouy |
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Condition (6) makes sense only for 0 < x <!, since for x > [ the problem becomes a single-layer problem,
a solution for which is given in [3].

We solve the problem by applying the following differential-difference scheme.

In Egs. (1) and (2) we put t =t,, .4, and we replace the derivative with respect to t by the finite-dif-
ference ratios
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where h =ty o4 — tp, is the time-step.

Substituting the expressions (7) and (8), respectively, into Eqs. (1) and (2), we obtain a system of
ordinary differential equations
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Here a} = c;p;/k;jh and the uj y +1(x) approximate uj(x, tm +y) ( =1, 2).

The initial and boundary conditions are transformed as follows:
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Similarly, by replacing the time derivative d¢(t)/ dt by the finite-difference ratio [£(ty +1) — & (tyy)]/ b
in Eq. (6), we obtain equations for determining the ¢, 4, approximating the values £ (ty,; +)
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The solutions of Egs. (9) and (10), obtained by the method of variation of parameters, can, upon
taking into account the conditions (11) and the approximate equality ui’m+1[§ tm+1)] = ui’mﬂ(émﬂ), be
put into the form
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where
P(x) = akychay (I — x) + akysha, (| — x),
R(z, x) =a.k sha,(z—1)cha, (I —x) 4- a,k, cha,(z— ) sha, (! —x).
Expressions (13) and (14) can serve as recursion relations for determining the successive values of
W m +1®) and Uy 44 (x).

To find the values of the £, .1 we use Egs. (12), which, after substitutions are made for ul"m +1Emn)s
assume the form
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(m=0,1,2, ...).
We determine the displacement of the moving boundary for each time interval h,
We let
Tém+1 - Em = 6m+1
and
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Then
Emar = Em T Oy (16)
and from Eq. (15) we obtain
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To determine 8, .4 we expand the function &, + 0, +4) ina Taylor series
(D(Em + 6m+1) =@ (gm) + 6m+1(D, (gm) + O(6f2n+l)
Taking into account terms up fo order 5%1“, we obtain, from Egs. (17),
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S > —————— (m=0,1,2,..), (18)

— =0’ (gm)
1

1517



where

' P’ (&w)
(0] = — " D .
Knowing 6, .4 from Eqs. (18), we can successively determine {4 form =0,1, 2, ..., since § =0 is

known.

Using Rothe's lemmas [4, 5], we can prove convergence of the approximate solutions to the exact
solutions and thus estimate the error of our method. In so doing, we can show that the errors made are
of order O (h).

NOTATION
w (x,t), up (x,t) are the temperatures;
um is the melting point;
&(t) is the function determining the position of moving boundary;
cy, Cy are the specific heat fluxes;
Pty Py are the density;
ki, ky are the heat-transfer coefficients;
A is the latent heat of evaporation;
T is the time of process under consideration.
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